《智能门锁》编制说明

一、工作简况

1 任务来源

根据深圳市卓越绩效管理促进会发布的 2020 年第一批团体标准立项通知,将制定《智能门锁》等 六项团体标准项目列为团体标准工作计划。主要起草单位中国质量认证中心深圳分中心、威凯检测技术有限公司、深圳市卓越绩效管理促进会等,计划完成时间 2020 年。

2 主要工作过程

起草阶段:按本标准进度要求,2020年1月,深圳标准认证联盟秘书处组织并组建了《智能门锁》团体标准起草工作组,向有关生产厂家收集了有关数据与资料,根据国内外最新产品技术的现状和发展情况,搜集和整理技术资料,并进行大量的研究分析、资料查证工作。在此基础上工作组于 2020年3月完成了标准工作组草案框架初稿的编写。

2020年3月27日,工作组在线上召开了第一次工作组会议。会上,与会专家经过热烈的讨论,完善了技术框架,会后,根据会议讨论的问题点,修改了标准草稿,基本形成了标准全文内容。

2020年6月17日,工作组在广东省深圳市召开了第二次工作组会议。会上,与会专家对第一次会议后形成的草稿进行了再次讨论,会后,根据问题点进行了修改,形成了标准征求意见稿。

二、标准的编制原则和主要内容

本标准编制原则与《深圳标准先进性评价细则 智能门锁》保持一致,重点明确智能门锁的力学性能、电源、气候环境、机械、电磁兼容、反复启闭次数(耐久性)、按键寿命、指纹识别安全、人脸识别安全、固件安全、移动应用功能等。过程中还参考了《T/SZS 4005-2019 智能门锁通用技术条件》,紧密结合本行业多年的工作经验而制订。

上述主要技术指标的选定原则:在满足国家标准 GB 21556-2008《锁具安全通用技术条件》、行业标准 GA 374-2019《电子防盗锁》和 JG/T 394-2012《建筑智能门锁 通用技术要求》等标准的基础上,对指标的国内外现状进行分析研究,以国内领先、国际先进水平或者填补国内、国际空白为原则,从以下八类指标性质提出影响产品质量的主要技术指标:

- 1. 产品创新,能够进一步满足顾客需求,开辟新的市场-人脸识别安全;
- 2. 符合产业政策引导(绿色节能)方向-电源;
- 3. 填补国内(国际)空白,能够提升产品质量-固件安全、移动应用功能;
- 4. 严于国家行业标准,质量提升明显-反复启闭次数(耐久性)、按键寿命、电磁兼容:
- 5. 清洁生产,材料选择、生产过程生态环保-气候环境;
- 6. 产品安全健康环保,维护人体安全,有利身体健康,加强环境保护-机械;
- 7. 消费体验,满足消费者实际需求,提升用户体验-欠压指示、稳定性;
- 8. 行业特殊要求,符合并高于产品所在行业的特殊要求,带动质量明显提升-指纹识别安全。

表 1 智能门锁产品先进性判定标准

序号	指标性质			◆ 表准 を	2门坝广丽尤进性利定位 参考来源	指标先进值	检测方法	说明
1.	3113111	力性能电源	主锁舌轴向静载荷	B级: 3000 N, 回缩量不应大于 5mm, 且电子防盗锁应能正常工作	GA 374-2019 电子防盗锁	B级: 4500 N, 回缩量不应大于 3mm, 且电子防盗锁应能正常工作	GA 374-2019 电子防盗锁	结合行业水平和 企业实际情况(6
2.	✓ 严国 行 标等		主锁舌侧向静载荷	B级: 6000 N,且电子 防盗锁应能正常工作	GB 21556-2008 锁具安全 通用技术条件或 GA 374-2019 电子防盗锁	B级: 7000 N, 且电子 防盗锁应能正常工作	GB 21556-2008 锁 具安全通用技术 条件或 GA 374-2019 电子防盗锁	家企业代表中5 家提出了降低到 4000N的要求), 轴向指标修改 为:修改为4000N
3.			电池容量	正常启、闭 3000 次以 上	GB 21556-2008 锁具安全 通用技术条件或 GA 374-2019 电子防盗锁	正常启、闭 6000 次以 上	GB 21556-2008 锁具安全通用技 术条件或 GA 374-2019 电子防盗锁	结合产品差异性 和企业实际情况 (6家企业代表 中4家提出了对 锂电池单独考核 的要求),增加 对锂电池供电的 要求
4.		气 候环 境	盐雾	II 级: 96h	GA 374-2019 电子防盗锁	II 级: 128h	GA 374-2019 电 子防盗锁	考虑到电镀或喷漆等行业的污染和企业实际情况(6家企业代表中5家提出了对锂电池考核的要求),区分不同金属零件的判定等级,分为:外部可视部件和外部无法可视部

序号	指标性质	关键指标项		参考基准	参考来源	指标先进值	检测方法	说明
								件
5.		机 械	防钻	被打开的净工作时间 应不少于 15min	GA 374-2019 电子防盗锁	被打开的净工作时间 应不少于 30min	GA 374-2019 电 子防盗锁	/
6.		电 磁兼 容	射频电磁场辐射抗 扰度	试验场强 10V/m(GB/T 17626. 3-2016 中试验 等级 3 级)	GB 21556-2008 锁具安全 通用技术条件或 GA 374-2019 电子防盗锁	试验场强 30V/m(GB/T 17626. 3-2016 中试验 等级 4 级)	GB 21556-2008 锁 具安全通用技术 条件或 GA 374-2019 电子防盗锁	/
7.	✓ ✓ ✓ ✓ 严国行标消体于家业准费验			10000 次	GA 374-2019 电子防盗锁	200000 次	GA 374-2019 电 子防盗锁	考虑到产品使用 周期(20万次可以用20年以上)和企业实际情况 (6家企业代表中3家提出了解 低耐久性次数要求),考虑到10 万次,产品已经可以用10年以上,选定位10万次
8.	等		按键寿命	6000 次	GB 21556-2008 锁具安全 通用技术条件	200000 次	GB 21556-2008 锁具安全通用技 术条件	按键寿命与耐久 性,情况等同
9.			稳定性	在正常大气压下连续加电7天,每天启、闭不少于30次,产品应能正常工作,不出现误	GB 21556-2008 锁具安全 通用技术条件或 GA 374-2019 电子防盗锁	在正常大气压下连续加电 30 天,每天启、闭不少于 200 次,产品应能正常工作,不出现	GB 21556-2008 锁 具安全通用技术 条件或 GA 374-2019	/

序号	指标性质	关键排	針 标项	参考基准	参考来源	指标先进值	检测方法	说明
				动作。		误动作。	电子防盗锁	
10.		欠压	指示	应能给出欠压指示, 且给出欠压指示后还 能正常启、闭不少于50 次	GB 21556-2008 锁具安全 通用技术条件或 GA 374-2019 电子防盗锁	应能给出欠压指示,且 给出欠压指示后还能 正常启、闭不少于 100 次	GB 21556-2008 锁 具安全通用技术 条件或 GA 374-2019 电子防盗锁	/
11.		指纹识别安 全	认假率	/	/	≤0.001%	GA 701-2007 指纹防盗锁通用 技术条件	/
11.	✓ 填补 国内		拒真率	/	/	≤1%		/
12.		人脸识别安 全	2D 防伪率 SAR	/	/	≤0%	T/SZS 4005-2019 智能门锁通用技 术条件	适用于具有人脸 识别功能的智能 门锁。
13.	空 白 等	固件	安全	/	/	a) 应具备固件升级功能; b) 固件升级应校验固件文件的签名信息。	T/SZS 4005-2019 智能门锁通用技 术条件	/
14.		移动应用功能		/	/	智能门锁应具备移动 应用管理的功能。	视检	/

三、主要试验情况分析

本标准对应的产品为智能门锁,是该产品的先进性评价标准,它主要包括了力学性能、电源、气候环境、机械、电磁兼容、反复启闭次数(耐久性)、按键寿命、指纹识别安全、人脸识别安全、固件安全、移动应用功的技术要求,可以作为采购单位认定该产品整体技术水平的依据。为此,标准工作组进行了大量的基础试验工作,对该类试验的最终结果和各项性能指标进行了验证。

四、标准涉及专利及知识产权情况说明

本标准项目不涉及知识产权问题。

五、预期达到的社会效益、对产业发展的作用等情况

本标准的制定吸收了智能门锁最新的产品技术,并根据智能门锁特点提出了有针对性的指标要求。 标准制定公布后,对于规范国内智能门锁的生产,拔高该产品的各项技术及性能指标,有实际的指导 意义;同时对于该类产品的使用单位,也提供了一份可以借鉴与参考的技术资料,使供需双方能在技术的层面达成一致。

六、与国际、国外对比情况

本标准没有采用国际标准。

本标准在制定过程中没有查询到同类的国际、国外标准。

本标准制定过程中未测试国外的样品、样机。

本标准水平为国内先进水平。

七、在标准体系中的位置,与现行法律、法规、规章及相关标准协调性

本标准为智能门锁的先进性评价标准,与现有智能门锁的其它团体和行业标准协调使用。 本标准与现行的国家强制性标准及国家法律法规协调一致。

八、重大分歧意见的处理经过和依据

无。

九、标准性质的建议说明

本标准建议为推荐性标准。

十、贯彻标准的要求和措施建议

在本标准正式发布后,深圳标准认证联盟秘书处将根据部分生产商的需求进行宣贯培训。 建议本标准批准发布后即刻实施。

十一、废止现行相关标准的建议

无。

十二、其他应予说明的事项

无。