深圳标准先进性评价细则 人形教育机器人

为对人形教育机器人产品标准进行深圳标准先进性评价,特制定本细则。本细则主要内容包括但不限于:主要技术指标确定程序、主要技术指标、先进性判定标准、先进性评价程序等。

具体如下:

一、 主要技术指标确定程序

主要技术指标的确定程序包括:

- (一)梳理国内外相关标准,形成相关的标准集合:
- (二)收集产品相关的认证项目和检测要求;
- (三)基于行业现状和市场需求,按照指标项的类型、层次、 作用进行划分,形成指标池;
- (四)征求行业协会、专业技术机构意见,召开专家评审会, 在指标池中抽取核心指标,并确定核心指标基准线。

二、 人形教育机器人产品标准评价

(一) 主要技术指标

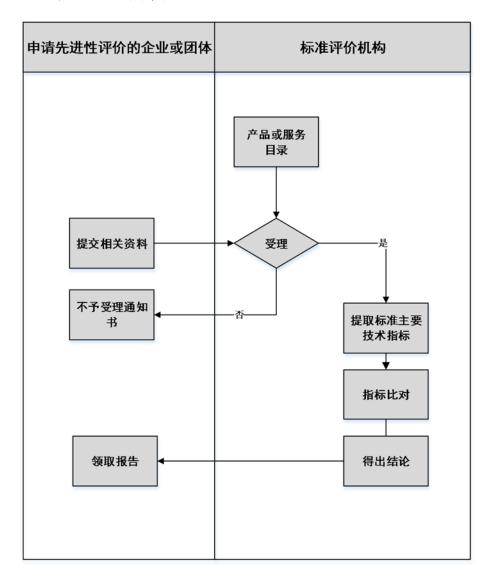
梳理人形教育机器人产品指标项,在满足我国市场准入强制性要求(包括整机 CCC 的认证要求、无线电型号核准 SRRC 认证)和 GB/T 33265-2016《教育机器人安全要求》的基础上,对指标的国内外现状进行分析研究,以国内领先、国际先进水平或者填补国内、国际空白为原则,从以下八类指标性质提出影响产

品质量的主要技术指标:

- 1. 产品创新,满足用户需求,开辟国内外新的市场;
- 2. 符合产业政策引导方向:
- 3. 填补国内(国际)空白,能够提升产品质量;
- 4. 严于国家行业标准,质量提升明显;
- 5. 清洁生产,材料选择、生产过程生态环保;
- 6. 产品安全健康环保,维护人体安全,有利身体健康,加强 环境保护;
- 7. 用户体验,拟人化设计,提升用户体验;
- 8. **行业特殊要求**,符合并高于产品所在行业的特殊要求, 带动质量明显提升。

(二) 先进性判定标准

先进性判定标准见表 1:


表 1 人形教育机器人先进性判定标准

序号	指标性质		关键指标 项		指标先进值	检测方法	说明
1	✓	产安健环品全康保	安全要求	堵转 保护	在机器人运动过程中,运动关节被完全堵住,3秒内,触发堵转保护。	设定任意 1 个运动动作,阻挡舵 机或机器人肢体沿着预设运动轨 迹继续运动;从舵机或机器人肢 体的运动被完全堵住时,开始计 时,检查是否 3 秒内触发堵转保 护。	
				急停保护	具备"硬急停"与 "软急停"功能。	硬急停:机器人运行时按下机器 人急停按钮,机器人急停关机; 软急停:机器人运行时在 APP 控 制界面点击"急停"(或类似功能 按钮),机器人急停关机。	/
				表面 温度 控制	室温下,机器人正常 运行 10 小时,表面 可触及温度≤45℃ ±3℃	室温 25℃环境下,正常运行 10 小时后,测试机器人表面温度。	
2	✓	体验	APP 控制 社区共享 动作精度 动作编辑功能		支持手机控制、编程 功能,包括: Android 与 IOS 操作系统。	下载 APP,进行实际操作。	/
					具备互联网开放式 社区共享功能:用户 可分享机器人控制 程序代码,并配有内 容审核及举报机制。	检查是否可通过社区进行自由下载、分享机器人控制程序代码等内容;并检查社区内是否有内容举报机制;并检查社区后台是否有内容审核管理机制。	/
					机器人实际动作与 编程设定动作之间 的误差不超过1°。	将编程设定的动作与机器人实际 动作进行对比,误差不超过 1°; 任意选取 3 个动作。	/
					具备动作回读功能 且回读动作具备可 编辑性	开启动作回读与编辑功能,手动操控机器人运动部件至特定位置,检查动作回读功能是否能准确记录与重现机器动作;并检查能否通过编辑功能编辑已经记录的动作;任意选取3个动作。	/
				到自动	机器人随机跌倒自 动爬起功能。	任意角度推倒机器人3次,机器 人可自行爬起,且自动爬起时间 不超过10秒。	/
				广展传 惑器	具备传感器扩展接 口。	检查机器人是否具备传感器通用 接口,然后,连接扩展的传感器进 行实际演示。	/

序号	指标性质	关	建指标项	指标先进值	检测方法	说明
		拟。	人行走	可进行直立行走,并 具备调整步态的能 力。	机器人执行走路动作,并目测其 姿态平衡调整效果。	/
		可约	編程功 能	支持电脑端的图形 化编程及 python 与 C++等两种或多种 逻辑编程语言的编 程。	分别使用 python 与 C++等两种不同的编程语言进行编程,检查机器人是否能实现程序编辑的动作。	/
		语-	音唤醒	男、女声 3 米距离唤 醒率均超过 80%。	在环境噪声小于 65dB 的条件下, 与机器人保持 3 米距离,以 75dB 音量唤醒机器人。其中,男、女声 各 200 次。	/
			动语音 容推送	按照设定条件,主动推送语音内容。	在设定条件下,检查机器人是否 推送信息,并检验推送信息内容 是否符合预设条件。	/
3			高温运行	(+45℃±3℃), 8 小时	温度: 45℃; 保持时间: 8小时; 试验步骤: 1. 环境温度从 25℃上升到 45℃,温变率为1℃/min,保 持8小时; 2. 环境温度从 45℃以 1℃/min 速率降到 25℃。 判据: 试验完成后,产品的外观、 结构、功能正常。	
	→ 产品 安全 学	現适应	高温存储	(+60℃±3℃), 48 小时	温度: 60℃; 保持时间: 48 小时; 试验步骤: 1. 环境温度从 25℃上升到 60℃,温变率为1℃/min,保 持48 小时; 2. 环境温度从 60℃以 1℃/min 速率降到 25℃。 判据: 试验完成后,产品的外观、 结构、功能正常。	/
			低温运行	(-10℃±3℃), 8 小时	温度: -10℃; 保持时间: 8 小时; 试验步骤: 1. 环境温度从 25℃下降到- 10℃,温变率为1℃/min,保 持8小时; 2. 环境温度从-10℃以1℃/min	

序号	指标性质	关键指标 项	指标先进值	检测方法	说明
				速率升到 25℃。 判据:试验完成后,产品的外观、 结构、功能正常。	
		低温	(-40°C±3°C),	温度: -40℃; 保持时间: 48 小时; 试验步骤: 1. 环境温度从 25℃下降到- 40℃,温变率1℃/min,保持	
		存储	48 小时	48 小时; 2. 环境温度从低温-40℃以 1℃/min 速率升到 25℃。 判据:试验完成后,产品的外观、结构、功能正常。	

三、 先进性评价程序

四、 实施日期

本细则自 2018 年 04 月 28 日起实施。

五、 发布机构

深圳市标准技术研究院。