深圳标准先进性评价细则 自动体外除颤器

为对自动体外除颤器产品标准进行深圳标准先进性评价, 特制定本评价细则。本细则主要内容包括但不限于:主要技术 指标确定程序、主要技术指标、先进性判定标准、先进性评价 程序等。

具体如下:

一、 主要技术指标确定程序

主要技术指标的确定程序包括:

- (一)梳理国内外相关标准,形成相关的标准集合;
- (二) 收集产品相关的认证项目和检测要求;
- (三)基于行业现状和市场需求,按照指标项的类型、层次、 作用进行划分,形成指标池;
- (四)征求行业协会、专业技术机构意见,召开专家评审会, 在指标池中抽取核心指标,并确定核心指标基准线。

二、自动体外除颤器产品标准评价

(一) 主要技术指标

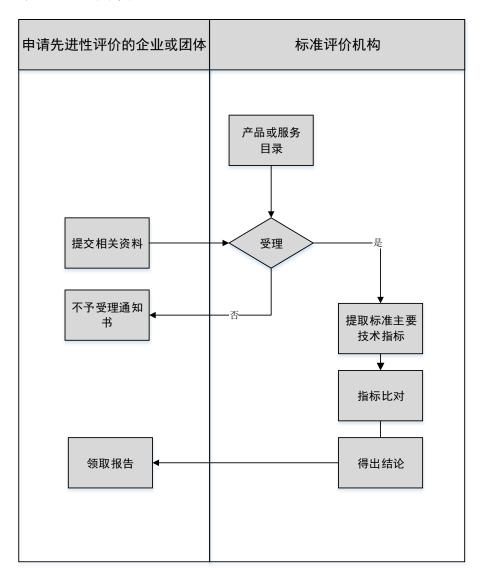
梳理自动体外除颤器产品指标项,在满足相关法律法规及GB 9706.1-2007 《医用电气设备:第1部分:安全通用要求》、GB 9706.8-2009 《医用电气设备 第2-4部分:心脏除颤器安全专用要求》、GB 4208-2017 《外壳防护等级(IP代码)》、GB/T 14710-2009 《医用电器环境要求及试验方法》、YY 0505-2012

《医用电气设备 第 1-2 部分:安全通用要求并列标准:电磁兼容要求和试验》、YY/T 0196-2005 《一次性使用心电电极》、JJF 1149-2014 《心脏除颤器校准规范》等相关标准基础上对指标的国内外现状进行分析研究,以国内领先、国际先进水平或者填补国内(国际)空白为原则,从以下八类指标性质提出影响产品质量的主要技术指标:

- 1. 产品创新,能够讲一步满足顾客需求,开辟新的市场:
- 2. 符合产业政策引导方向;
- 3. 填补国内(国际)空白,能够提升产品质量:
- 4. 严于国家行业标准,质量提升明显:
- 5. 清洁生产,材料选择、生产过程生态环保;
- 6. **产品安全健康环保**,维护人体安全,有利身体健康,加强环境保护;
- 7. 消费体验,满足消费者实际需求,提升用户体验;
- 8. **行业特殊要求,**符合并高于产品所在行业的特殊要求, 带动质量明显提升。

(二) 先进性判定标准

先进性判定标准见表 1:


表 1 自动体外除颤器产品先进性判定标准

序号	指标性质	关键指标项	初件外除颤奋厂而尤进的 指标先进值	检测方法	说明
1	✓ 填补国内空白	远程维护功能	提供 WIFI 或移动蜂窝网络接口,每日一次自检,设备运行状态和自检报告上传到云端,云端推送设备状态和自检报告信息至管理员	功能测试	/
2	✓ ■ 一	双向波释放能量/ (J)	最大可达到 360	GB 9706.8-2009 医 用电气设备第 2-4 部分:心脏除颤器 基本安全和基本性 能专用要求	/
3		跌落高度/ (m)	1.5m 跌落后可正常使用	EN 1789- 2007+A1:2014 医疗 车辆及其设备. 道 路救护车	/
4		充电时间/ (s)≤	AED 模式启动至最大能量 充满的时间≤30; AED 分析至最大能量准备 放电时间≤20;手动除颤 模式下充电至最大能量< 13	GB 9706.8-2009 医 用电气设备第 2-4 部分:心脏除颤器 基本安全和基本性 能专用要求	/
5		能量精度/ (J)≤	±10%或±2(取两者的较 大值)	使用除颤起搏分析 仪进行能量精度测试	/
6		病人阻抗/ (Ω)	25~250	选择 25~250 Ω 放 电电阻,连接至除 颤器电极片两端, 验证能否充电和放 电	/
7		工作温度/ (℃)	0~50	GB/T 14710-2009 医用电器环境要求 及试验方法	/

编号: SSAE-A17-004:2019

序号	指标性质	关键指标项	指标先进值	检测方法	说明
8	✓ 填补国内空白	防尘防水	IP55	GB 4208-2017 外壳 防护等级(IP 代 码)	/

三、 先进性评价程序

四、 实施日期

本细则自 2019 年 4 月 1 日起实施。

五、 发布机构

深圳市标准技术研究院。